Don’t Let Your Messy Documents Run You RAG-Ged. Announcing Document Curation in Cleanlab Studio

June 7, 2024
  • Emily BarryEmily Barry

What’s one of the biggest obstacles to standing up a RAG system? A document collection that’s uncurated and riddled with problems. Duplicate information, personally identifiable information, label problems, toxic language, biased/informal language – the list goes on.

That’s why we’re delighted to announce Document Support - instantly unify large amounts of disparate and unstructured documents into usable auto-curated datasets, with just a few clicks. From the same screen you can deploy a robust and trustworthy model with confidence and without needing to build bespoke pipelines to manage pre-processing.

As a team of Data Scientists ourselves, we know that RAGs are all the rage in 2024 - but going from sandbox to production on a reasonable timeline is the hard part. Our team has focused our efforts on developing cutting edge AI that not only auto-detects and resolves issues across all major datatypes, it can help you label heterogenous data now too. You can leverage our no-code data interface to quickly curate a useful document collection out of your existing materials without spending countless hours and creating manual headaches. Cleanlab Studio now directly supports document collections composed of files of the following types: doc, docx, pdf, ppt, pptx, csv, xls, xlsx - all in the same dataset.

RAG applications aren’t the only document use-case Cleanlab Studio has added enormous value to - check out our solutions pages to learn more about how industry and application agnostic Cleanlab Studio can be. Cleanlab Studio is the one platform a team needs to instantly curate data for a broad range of tasks and deploy better models faster.

Here are some examples to get you started:

You don’t need a Doc-tor in the house. You just need Cleanlab. Sign up for a free trial.

Related Blogs
OpenAI's o1 surpassed using the Trustworthy Language Model
See results from using the Trustworthy Language Model to: detect hallucinations/errors from the o1 model and improve its response accuracy.
Read more
Ensuring Reliable Few-Shot Prompt Selection for LLMs
Learn data-centric techniques for better few-shot prompting when applying LLMs to noisy real-world data.
Read more
Automatically detecting LLM hallucinations with models like GPT-4o and Claude
Benchmarking hallucination detection via the Trustworthy Language Model, now using the newest models from OpenAI and Anthropic.
Read more